DNA Phantom effect

From Portal
Jump to: navigation, search


It is fortunate that the experimental data provides us with qualitative and quantitative information about the nonlinear dynamical properties of the phantom DNA fields. Namely, these experimental data suggest that localized excitations of DNA phantom fields are long living and can exist in non-moving and slowly propagating states. This type of behavior is distinctly different from the behavior demonstrated by other well known nonlinear localized excitations such as solitons which are currently considered to be the best explanation of how vibrational energy propagates through the DNA. —Peter Gariaev, Ph.D.

The World Matters excerpts


About the detection of the “DNA Phantom effect”.

Peter Gariaev has seen the effect for the first time in 1985, when he worked with correlation spectroscopy of DNA, ribosomes and collagen in the Institute of physics/techniques problems Acad. Sci. of the USSR.

However, to publish it, was possible only in 1991 (Gariaev P.P., Chudin V.I., Komissarov G.G., Berezin A.A., Vasiliev A.A., 1991, Holographic Associative Memory of Biological Systems, Proceedings SPIE – The International Society for Optical Engineering. Optical Memory and Neural Networks. v.1621, p.280- 291. USA.), and then in (Gariaev P.P., “Wave based genome”, Ed. Obsh. Pl’za, 279p. In Russian (1994)), where the biggest chapter of the book is devoted to this effect.

In 1995 Poponin has received an invitation in USA and has offered, as continuation of the joint work with Peter Gariaev in the Lebedev Physical Institute of the Russian Academy of Sciences, again jointly to publish an article about the DNA phantom effect in USA. Peter Gariaev agreed and gave him the diagrams and the description of the method. Then an article “of Poponin” with the data of Peter Gariaev appeared in the internet 1995, but without his participation.

In this article Poponin refers to the joint publication (Gariaev, K.V. Grigor’ev, A.A. Vasil’ev, V.P. Poponin and V.A. Shcheglov. Investigation of the Fluctuation Dynamics of DNA Solutions by Laser Correlation Spectroscopy. Bulletin of the Lebedev Physics Institute, n. 11-12, p. 23-30 (1992))

But this paper is ONLY about the DNA fluctuation dynamics, investigated by a method with laser correlation spectroscopy, and there is no relation to the DNA phantom effect.

With best regards Peter Gariaev, Ph.D.

The Weather Master © 2012
More: http://www.twm.co.nz/the-dna-phantom-effect/